National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Calculation and optimization of synchronous servomotor reluctance torque.
Kroupa, Martin ; Hájek, Vítězslav (referee) ; Ondrůšek, Čestmír (advisor)
This work is mainly focused on construction and design simulation of synchronous servomotor. This motor is built by 30 permanent magnets which are attached to rotor and solved in Ansoft Maxwell 14 software. The main purpose was to calculate reluctance torque, which is significant during the motor operational mode and its optimization. Ansoft Maxwell 14 can analyze in 2D mode as well as in 3D mode, for analysis it uses method of finite elements. Subjects can be analyzed in static conditions, or in any way of transient movement. Optimization in 2D, where we will change the shape in the area of air gap, will only be used as revision that the reluctance torque is bounded with this factor. The main simulations were supposed to be done in 3D model, where the role of rotation should have been taken in account to the final result. These simulations were replaced by alternative calculation. On behalf of achieved results, the optional rotation is stated in the end of my work.
Synchronous generator reactance prediction using FE analysis
Chmelíček, Petr ; Lapčík, Josef (referee) ; Ondrůšek, Čestmír (advisor)
Parametry nahradniho obvodu synchronniho stroje znance ovlivnuji jeho chovani jak pri statickem provozu, tak predevsim pri nahlych dynamickych jevech a poruchovych stavech. Prace je zamerena na zhodnoceni dostupnych metod pro vypocet techto parametru pomoci Metody konecnych prvku. Prvni cast je venovana teoretickemu popisu zakladnich principu Metody Konecnych Prvku a jejich aplikaci na reseni problemu elektromagnetickeho pole v elektrickych strojich. Zaroven take shrnuje zakladni usporadani nahradniho obvodu synchroniho stroje, principi jeho konstrukce a zakladni funkci. Druha cast je venovana praktickemu vypoctu reaktanci nahradniho obvodu synchronniho stroje. S pomoci MKP jsou vypocteny synchronni reactance s uvazovanim vzajmeneho magnetickeho pusobeni proudu v d a q ose. Pro vypocet transientnich a subtransientnich reaktanci jsou navrzeny ctyri odlisne metody a jsou zhodnoceny z hlediska pozadovane presnosti vypoctu a narocnosti na vypocetni cas. Zaverecna cast popisuje zakladni merici metody pro urceni parametru nahrandniho obvodu na skutecnem stroji. Kapitola take obsahuje srovnani simulace trifazoveho zkratu synchronniho stroje s realnou zkouskou provedenou laboratorne. Zaver obsahuje srovnani jednotlivych metod a navrh optimalniho postupu pro vypocet zkoumanych parametru.
Computational and experimental analysis the state of stress of turbine blade
Damborský, Petr ; Jaroslav, Kovařík (referee) ; Malenovský, Eduard (advisor)
This diploma thesis deals with dynamic analysis of the steam turbine blade. This blade is part of the last row of low pressure level of steam turbine. Computational analysis has been performed in first part using FEM and software ANSYS. A Transient analysis has been used to solve forced vibrations. Main goal is to obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. Second part deals contain a an experiment. Experiment has been set up to perform a modal analysis which is necessary to obtain a fundamental numbers. Then the vibration of the blade has been performed. To perform this experiment same edge conditions as which has been used during the computational analysis. Goal is the same as in the first part – obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. The comparison of results obtained during experimental analysis and computational analysis has been performed in the last part of the thesis. Also the question if any geometrical nonlinearities appeared during analyses is answered.
Simulation of toroid coils in Ansoft Maxwell 3D
Daněk, Michal ; Pfeifer, Václav (referee) ; Hanák, Pavel (advisor)
The master thesis is focused on the simulation of the toroid coils in Ansoft Maxwell 3D software, which uses finite element method for electromagnetic field simulation. Firstly the process creation of the geometric model toroid coil with seventy-five threaded is presented. It is necessary to debug this model and prepare it for the mesh generation. Physical properties are assign to this model and it gives rise to the physical model. We will set boundaries, excitation current, core material, winding material and the parameters for the mesh generations. New material Kashke K4000 will be created in the materials library and subsequently we will define its BH curve on the basis of datasheet. Analysis is made in two modes. Direct currents (7,5A; 10A; 15A; 20A; 25A) and (non)linear materials are used in magnetostatic solution. Toroid coil is excited by current pulse in transient solution. In Ansoft Maxwell Circuit editor a source which generates current pulse will be created. This excitation will be assigned to the toroid coil as an extern source through a terminal. Core material is linear in the case of transient analysis, because Ansoft Maxwell 3D doesn´t allow to use nonlinear material in this solution. Settings are different in transient and in magnetostatic analysis. End time and time step are entered to solve this task in transient analysis. Time points are entered too. Flux density and electromagnetic field strength are calculated in these time points and later it will be possible to view the results. Calculated fields are shown as the pictures in this thesis. The procedure how to use a field calculator in the postprocessing is given as well. The achievements are summarized in the conclusion.
Calculation and optimization of synchronous servomotor reluctance torque.
Kroupa, Martin ; Hájek, Vítězslav (referee) ; Ondrůšek, Čestmír (advisor)
This work is mainly focused on construction and design simulation of synchronous servomotor. This motor is built by 30 permanent magnets which are attached to rotor and solved in Ansoft Maxwell 14 software. The main purpose was to calculate reluctance torque, which is significant during the motor operational mode and its optimization. Ansoft Maxwell 14 can analyze in 2D mode as well as in 3D mode, for analysis it uses method of finite elements. Subjects can be analyzed in static conditions, or in any way of transient movement. Optimization in 2D, where we will change the shape in the area of air gap, will only be used as revision that the reluctance torque is bounded with this factor. The main simulations were supposed to be done in 3D model, where the role of rotation should have been taken in account to the final result. These simulations were replaced by alternative calculation. On behalf of achieved results, the optional rotation is stated in the end of my work.
Computational and experimental analysis the state of stress of turbine blade
Damborský, Petr ; Jaroslav, Kovařík (referee) ; Malenovský, Eduard (advisor)
This diploma thesis deals with dynamic analysis of the steam turbine blade. This blade is part of the last row of low pressure level of steam turbine. Computational analysis has been performed in first part using FEM and software ANSYS. A Transient analysis has been used to solve forced vibrations. Main goal is to obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. Second part deals contain a an experiment. Experiment has been set up to perform a modal analysis which is necessary to obtain a fundamental numbers. Then the vibration of the blade has been performed. To perform this experiment same edge conditions as which has been used during the computational analysis. Goal is the same as in the first part – obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. The comparison of results obtained during experimental analysis and computational analysis has been performed in the last part of the thesis. Also the question if any geometrical nonlinearities appeared during analyses is answered.
Synchronous generator reactance prediction using FE analysis
Chmelíček, Petr ; Lapčík, Josef (referee) ; Ondrůšek, Čestmír (advisor)
Parametry nahradniho obvodu synchronniho stroje znance ovlivnuji jeho chovani jak pri statickem provozu, tak predevsim pri nahlych dynamickych jevech a poruchovych stavech. Prace je zamerena na zhodnoceni dostupnych metod pro vypocet techto parametru pomoci Metody konecnych prvku. Prvni cast je venovana teoretickemu popisu zakladnich principu Metody Konecnych Prvku a jejich aplikaci na reseni problemu elektromagnetickeho pole v elektrickych strojich. Zaroven take shrnuje zakladni usporadani nahradniho obvodu synchroniho stroje, principi jeho konstrukce a zakladni funkci. Druha cast je venovana praktickemu vypoctu reaktanci nahradniho obvodu synchronniho stroje. S pomoci MKP jsou vypocteny synchronni reactance s uvazovanim vzajmeneho magnetickeho pusobeni proudu v d a q ose. Pro vypocet transientnich a subtransientnich reaktanci jsou navrzeny ctyri odlisne metody a jsou zhodnoceny z hlediska pozadovane presnosti vypoctu a narocnosti na vypocetni cas. Zaverecna cast popisuje zakladni merici metody pro urceni parametru nahrandniho obvodu na skutecnem stroji. Kapitola take obsahuje srovnani simulace trifazoveho zkratu synchronniho stroje s realnou zkouskou provedenou laboratorne. Zaver obsahuje srovnani jednotlivych metod a navrh optimalniho postupu pro vypocet zkoumanych parametru.
Simulation of toroid coils in Ansoft Maxwell 3D
Daněk, Michal ; Pfeifer, Václav (referee) ; Hanák, Pavel (advisor)
The master thesis is focused on the simulation of the toroid coils in Ansoft Maxwell 3D software, which uses finite element method for electromagnetic field simulation. Firstly the process creation of the geometric model toroid coil with seventy-five threaded is presented. It is necessary to debug this model and prepare it for the mesh generation. Physical properties are assign to this model and it gives rise to the physical model. We will set boundaries, excitation current, core material, winding material and the parameters for the mesh generations. New material Kashke K4000 will be created in the materials library and subsequently we will define its BH curve on the basis of datasheet. Analysis is made in two modes. Direct currents (7,5A; 10A; 15A; 20A; 25A) and (non)linear materials are used in magnetostatic solution. Toroid coil is excited by current pulse in transient solution. In Ansoft Maxwell Circuit editor a source which generates current pulse will be created. This excitation will be assigned to the toroid coil as an extern source through a terminal. Core material is linear in the case of transient analysis, because Ansoft Maxwell 3D doesn´t allow to use nonlinear material in this solution. Settings are different in transient and in magnetostatic analysis. End time and time step are entered to solve this task in transient analysis. Time points are entered too. Flux density and electromagnetic field strength are calculated in these time points and later it will be possible to view the results. Calculated fields are shown as the pictures in this thesis. The procedure how to use a field calculator in the postprocessing is given as well. The achievements are summarized in the conclusion.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.